Digitalisieren - Digitalisierung - Digitale Transformation: Sind Sie bereit?

Digitalisieren, Digitalisierung und digitale Transformation – Jetzt oder nie!

Digitalisieren – Digitalisierung – digitale Transformation – was sind eigentlich die Unterschiede? Wieso sollten Sie die Definitionen der Begriffe kennen? Informationstechnologie hat in den letzten Jahren das Arbeits- und das Alltagsleben radikal verändert – das ist klar. Zur Beschreibung der Phänomene werden Begriffe rund um das Wort “digital” verwendet. Wir erklären in diesem Beitrag, was IT-Profis unter den verschiedenen Begriffen verstehen und welche Auswirkungen diese haben.

Digitalisierung gehörte bis vor Kurzem noch zum guten Ton, jeder modernen Unternehmensstrategie um Fit für die Zukunft zu sein. Seit einigen Monaten ist sie zur Notwendigkeit geworden und verschafft Unternehmen in diesen besonderen Zeiten die benötigte Flexibilität um trotz aller Herausforderungen geordnet und produktiv weiterzuarbeiten.

Die digitale Fitness eines Unternehmens ist Teil seiner Resilience gegenüber Krisen geworden. Jetzt ist für viele Unternehmen vielleicht die letzte gute Gelegenheit die richtigen Schritte zu setzen, um nicht uneinholbar ins Hintertreffen zu gelangen. Daher ist es wichtig die drei Ebenen der digitalen Veränderung zu kennen und für das eigene Unternehmen eine ehrliche Selbsteinschätzung und nächste Schritte definieren zu können.

Was ist Digitalisieren?

Digitalisieren (engl. digitization) beschreibt eine Veränderung am Anfang des Prozesses. Dabei werden Daten in digitale Darstellungsformen übernommen, damit diese von Computern gelesen und verarbeitet werden können. Der Begriff beschreibt damit eine Technologie, die seit den Urzeiten der Informatik besteht. Erst durch das Digitalisieren können die in der Welt vorkommenden Informationen für EDV-Systeme nutzbar gemacht werden.

Dabei lässt sich durchaus pauschal sagen, dass je mehr Daten in guter Qualität aus möglichst vielen Datenquellen zur Verfügung stehen, umso besser können diese später ausgewertet, verknüpft und zur Entscheidungsfindung herangezogen werden. Der Begriff des Datenschatzes ist diesbezüglich zutreffend. Die Herausforderung liegt darin, die Daten in guter Qualität zu gewinnen. Die Techniken des Digitalisierens verbessern sich laufend.

Aktuell ist die Nutzung von AI (künstlicher Intelligenz) wesentlich für den Fortschritt in diesem Bereich. Seit vielen Jahren wird Artificial Intelligence zur Texterkennung in gedruckten Dokumenten eingesetzt. Die Erkennung von natürlicher Sprache ist eine weitere wichtige Anwendung. Das Erkennen von Gegenständen in Bildern bzw. das richtige Interpretieren von Szenen, die über Kameras aufgenommen werden, wird erst durch AI beim Digitalisieren ermöglicht.

Digitalisieren bleibt auch in Zukunft eine wesentliche Aufgabe, damit Computer die Realität außerhalb ihrer digitalen Welt erfassen können. Schon heute können Computer mittels ausgefeilter Sensoren und spezieller Software besser sehen, hören oder sogar riechen, als das jemals ein Mensch könnte. Einsatzgebiete wie das Autonome Fahren, die Medizin oder die Landwirtschaft sind wichtige Beispiele für dieses Anwendungsgebiet.

Was ist Digitalisierung?

Digitialisierung (engl. digitalization) steht für eine Veränderung eines gesamten Prozesses. Der Begriff beschreibt die umfassende Nutzung der Informationstechnologie in der Durchführung von Geschäfts-, Fertigungs- oder Serviceprozessen. Umfassend bedeutet dabei, dass Computer vom Anfang bis zum Ende des Ablaufes eingesetzt werden. Die benötigten Daten werden digital von einem Schritt zum nächsten weitergereicht bzw. liegen bereits digital vor. Es gibt keine Medienbrüche in der Verarbeitung.

Zur Digitalisierung müssen die Unternehmen ihre technischen Ökosysteme in der Informationstechnologie umbauen. Wesentlich dabei ist, dass Funktionalitäten und alle relevanten Daten ohne technische Barrieren überall dort eingesetzt werden können, wo sie benötigt werden.

Ein wesentlicher Effekt der Digitalisierung ist die explosionsartige Datenvermehrung, die dadurch zu erklären ist, dass Daten nicht nur automatisiert verarbeitet werden, sondern die überwiegende Mehrheit der Daten heute auch automatisch erstellt werden. Big-Data-Methoden und -Techniken greifen diese Herausforderung auf. Die Daten sollen nutzbar gemacht werden, denn immer stärker müssen Entscheidungen in der Politik und in Unternehmen auf Basis von detaillierten, belastbaren und aktuellen Informationen schnell und zuverlässig getroffen werden.

Was ist digitale Transformation?

Digitale Transformation (engl. digital transformation) geht noch weiter – der Begriff meint die Änderung von Geschäftsmodellen, Kundenbeziehungen und sogar Gesellschaftsstrukturen. Damit einhergehend verändern sich Markt- und Unternehmensstrukturen aufgrund des Einsatzes von Informationstechnologie. Diese sehr schnellen Veränderungen wirken sich auf bestehende Abläufe und Systeme so umwälzend aus, dass man oft den Begriff disruptiv dafür wählt.

Die digitale Transformation verändert Gesellschaft, Unternehmens und Arbeitswelten. Als Verantwortlicher muss man Innovationen und disruptive Veränderungen in den Vordergrund stellen. Technologie und deren Einsatz bestimmt wesentlich, ob eine Organisation oder ein Unternehmen mittelfristig erfolgreich ist.

Beispiele für die digitale Transformation sind nicht neu, denn der Prozess kam ca. Mitte der 1990er Jahre ins Rollen und gewinnt immer stärker an Schwung. Beispiele sind der Online-Versandhandel, Internet-Banken und -Versicherungen, Vermittlung von Personentransporten via App, Streaminganbieter im Bereich der Medien, die Nutzung von Social Media für die gezielte Werbung, uvw. Das aktuell viele Tätigkeiten über Webkonferenz durchgeführt werden, die zuvor mit kurzer oder längerer Reisetätigkeiten verbunden waren, wird unserer Meinung ebenfalls zu nachhaltigen Änderungen in der Reisebranche insbesondere im Bereich der Dienstreisen führen.

Ausgehend von bekannten Beispielen der digitalen Transformation scheint Schnelligkeit wichtiger als Unternehmensgröße und technische Kompetenz wichtiger als Kapital zu sein. Ein wesentlicher Punkt dabei ist die immer bessere Möglichkeit, günstige sowie hoch skalierbare und global verfügbare IT-Infrastruktur über öffentliche Cloud-Dienstleistungen zu beziehen.

Fazit: Digitalisieren ist nicht genug – go for transformation

Bereits ein Blick auf die begrifflichen Unterschiede zeigt, dass Digitalisieren alleine zu kurz greift. Klar – gute Daten sind die Voraussetzung für alle weiteren Prozesse. Eine Digitalisierung von Prozessen kann oft große Einsparpotentiale sowie die Kundenzufriedenheit heben. Aber um mittelfristig zu überleben, müssen Unternehmen ihre Geschäftsmodelle im Lichte der digitalen Transformation überprüfen und anpassen. Um Leader im Wettbewerb der digitalen Transformation zu bleiben ODER zu werden, müssen Sie die folgenden Punkte im Auge behalten und ein entsprechendes Skillset in Ihrem Unternehmen aufbauen:

  • Agilität und Design Thinking
  • Cloud Technologien
  • Artificial Intelligence
  • Big Data

Als Experten für digitale Innovation und Technologie unterstützen wir Sie gerne dabei!


UNSERE TRAININGSANGEBOTE ZU INNOVATIONSTECHNOLOGIEN:

Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects

Künstliche Intelligenz (KI) in der Medizin

Immer öfters fallen die Begriffe Künstliche Intelligenz (KI) und Artificial Intelligence (AI) in der IT-Welt – doch was ist eigentlich damit gemeint? Für Künstliche Intelligenz gibt es tatsächlich noch keine allgemein akzeptierte Definition. Prinzipiell werden damit Systeme bezeichnet, die Tätigkeiten durchführen können, die normalerweise mit menschlicher Intelligenz verbunden werden. Dazu gehören zum Beispiel Lernen, logisches Schlussfolgern und die Umgebung auffassen und darauf reagieren zu können. KI ist dabei nicht ein bestimmtes Programm, ein Algorithmus oder ähnliches, sondern die Kombination von verschiedenen Methoden, um solch komplexe Aufgaben auszuführen.

Auch in der Medizin wird KI immer stärker eingesetzt und viele medizinische Bereiche profitieren bereits davon, darunter auch die Diagnose, Behandlung oder Medikamentenentwicklung. Um das jeweils beste Ergebnis zu erzielen, muss die richtige KI-Methode eingesetzt werden.

Sissi Zhan, Medizinische Informatikerin und Consultant bei Spirit in Projects

Ein Gebiet, auf dem die Anwendung von KI mit großen Hoffnungen verbunden ist, ist die Medizin. Daher sehen wir uns einige Anwendungsmöglichkeiten und ihre Potentiale näher an.

KI-Anwendungen in der Medizin

Diagnose

Die Diagnose von Krankheiten erfordert viel Wissen und Erfahrung und nimmt zusätzlich viel Zeit der medizinischen Experten ein. Systeme mit KI können diese Fähigkeit erlernen, indem sie mit einer großen Anzahl an Daten trainiert werden.

Ein Großteil der KI-Anwendungen für die medizinische Diagnose basiert auf der Analyse von Bildern und der Erkennung darauf dargestellter Bildinhalte. Häufig wird die Bildanalyse z. B. bei Röntgenbildern eingesetzt, um Merkmale zu erkennen, die auf bestimmte Krankheiten deuten. Dabei ist die Technologie zum Teil schon sehr fortgeschritten. Bestimmte KIs können bereits anhand von Bildern der Haut eine Erkrankung an Hautkrebs mit hoher Genauigkeit identifizieren. Diese Anwendungen basieren auf der Bilderkennung und Bildverarbeitung. Wichtige KI-Methoden, die hier zu sehr erfolgreichen Systemen geführt haben, sind Neuronale Netze und Deep Learning.

Neben Bildanalysen sind auch Diagnosesysteme im Einsatz, die als Chatbot direkt mit dem Arzt oder direkt mit dem Patienten „kommunizieren“. Das System nimmt die Symptome des Patienten auf und verwendet die dahinterliegende Wissensbasis, um weitere relevante Fragen zu stellen, die zu einer Diagnose führen. Dazu werden Methoden zur Analyse von Sprache in Kombination mit regelbasierten Systemen wie z. B. Expertensystemen eingesetzt, die das Wissen und die Entscheidungsfindung eines Experten nachahmen.

Behandlung

Nach einer Diagnose wird eine passende Behandlungsstrategie aufgestellt. Dabei wirken Medikamente jedoch auf jeden Menschen in ihrer Effektivität und ihren Nebenwirkungen unterschiedlich. Ideal wäre daher eine individuelle Behandlungsstrategie für jeden Patienten.

KI kann hier unterstützen, indem sie Daten und Wissen durchforstet. Vorhandene Gesundheitsdaten und die Krankengeschichte eines Patienten können analysiert werden, um die Wahl der passenden Medikamente zu erleichtern. So kann eine KI-Anwendung umfangreiche Daten verarbeiten und schnell erkennen, dass ein Patient in der Vergangenheit einen bestimmten Wirkstoff nicht vertragen hat. Sie kann dem Arzt dann vorschlagen, ein anderes Medikament zu verschreiben.

Zusätzlich kann KI fördern, dass Therapien nach dem neuesten Stand der Forschung durchgeführt werden. Dabei analysiert eine solche Anwendung zuerst vorhandene medizinische Literatur und fasst dann die neuesten Erkenntnisse zu Behandlungen und Medikamenten zusammen. Somit kann sich ärztliches Personal trotz wenig verfügbarer Zeit weiterbilden.

Derartige Systeme müssen die Fähigkeit besitzen Texte zu lesen, relevante Inhalte zu erkennen und daraus Regeln ableiten zu können. Sie müssen also Sprache und deren Struktur und Bedeutung verstehen können. Zusätzlich müssen diese Systeme eine medizinische Wissensbasis aufbauen, die dem gefundenen Textinhalt Bedeutung gibt.

Medikamentenentwicklung

Die Entwicklung und Zulassung von Medikamenten dauert im Normalfall mehrere Jahre und ist sehr kostspielig. Außerdem durchlaufen nur wenige Medikamente alle Testphasen erfolgreich. KI kann diesen Prozess wesentlich beschleunigen und verbessern. Das kann durch die Unterstützung verschiedener Tätigkeiten entlang des ganzen Prozesses der Medikamentenentwicklung erfolgen.

Zuerst muss identifiziert werden, welche Moleküle (sogenannte Targets) bekämpft werden müssen, um die Krankheit zu behandeln. Danach werden Wirkstoffe gesucht, die gegen diese Krankheitserreger wirken. In beiden Schritten kann KI eingesetzt werden, um diese zu beschleunigen. Bei den darauffolgenden Medikamentenstudien ist es wichtig die passenden Teilnehmer zu finden, um beispielsweise Verfälschungen der Studienergebnisse zu vermeiden. Auch hier können mittels KI geeignete Personen gefunden werden.

Im Gegensatz zu einfachen Computerprogrammen können KI-Systeme hier mittels Machine Learning die Vielzahl der verfügbaren Daten durchgehen und auch mit unterschiedlich strukturierten Daten umgehen. Daraus erkennt das System relevante Muster in den Daten und lernt, welche Eigenschaften auf vielversprechende Targets deuten. Genauso kann auch die Wirkung von unterschiedlichen Medikamenten auf das identifizierte Target vorhergesagt werden und geeignete Studienteilnehmer gefunden werden.

Zusammenfassung

Am Beispiel der medizinischen Anwendungen zeigt sich, dass Methoden der KI heute schon gut eingesetzt werden können, wenn Wissen auf besonders umfangreiche Daten angewendet werden muss. Um KI-Anwendungen zu planen und zu definieren, ist es wichtig einen guten Überblick über die verschiedenen verfügbaren Methoden und ihre Möglichkeiten und Grenzen zu haben. Genau diesen Überblick können Sie sich durch unsere KI-Trainings fundiert und praxisorientiert aneignen.


Unsere Trainingsangebote zu Innovationstechnologien:

Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects

Serviceskalierung durch Native Cloud Computing

In der Cloud präsent zu sein ist nur der erste Schritt. Die besonderen Möglichkeiten von Cloud Computing zu nutzen ist der wichtigere Schritt. Eine dieser Möglichkeiten ist die fast uneingeschränkte Skalierbarkeit der bereitgestellten Anwendungen bzw. Services. Dazu müssen die verwendeten Dienste jedoch cloud-native sein und Orchestrierungsservices wie Kubernetes verwenden. Unser Cloud Experte gibt einen Überblick über die Architektur eines solchen Systems.

Zur Vorbereitung müssen über Container die Software und die benötigten Bibliotheken auf der Ebene des Betriebssystems gebündelt werden. Container nutzen den Kernel des Host Betriebssystems, sind jedoch auf Prozess- und Datei-Ebene von anderen Containern und vom Host getrennt. Der Ressourcenverbrauch von Containern kann genau konfiguriert werden.

Um diese Container in einem Cluster von virtuellen oder physischen Rechnern zu betreiben, bedient man sich eines Container Orchestrators. Der dominierende Container Orchestrator mit einem Marktanteil (je nach Umfrage zwischen 80 und 90 Prozent) ist Kubernetes. Docker Swarm und Apache Mesos sind alternative Produkte, spielen jedoch am Markt nur eine geringe Rolle.

Kubernetes wurde ursprünglich von Google entwickelt und 2014 als Open Source Plattform zum automatischen Deployment, der Skalierung und dem Management von containerisierten Applikationen veröffentlicht. Heute wird Kubernetes von der Cloud Native Computing Foundation (CNCF) verwaltet. Die CNCF wurde 2015 als Nonprofit-Organisation gegründet und ist Teil der Linux Foundation. Damit sollte auch die Weiterentwicklung in der Zukunft gesichert sein.

Kubernetes kann man entweder selbst On-Premise oder in der Cloud installieren beziehungsweise einen gemanagten Kubernetes Cluster nutzen.  Laut Marktforschung sind selbst-gemanagte Kubernetes Installationen rückläufig und die Nutzung der gemanagten Kubernetes Cluster Angebote wächst stark.

Architektur eines gemanagten Kubernetes Clusters

Ein Kubernetes Cluster (K8s) besteht aus 2 Komponenten:

Quelle: Microsoft Azure Dokumentation
  • Die Control Plane übernimmt die Steuerung des K8s. Sie wird vom Provider gemanagt und oftmals sogar kostenlos zur Verfügung gestellt.
  • Nodes, auf denen die in Container verpackten Applikationen ablaufen. Die Nodes, auf die die Applikationen deployt werden, werden vom Kunden gemanagt und wie virtuelle Maschinen abhängig vom Prozessortyp, der Anzahl der virtuellen VPUs und dem RAM verrechnet. Nodes werden in Nodepools zusammengefasst.

Implementierung eines gemanagten Kubernetes Clusters (K8s)

Die Installation des K8s kann zum Beispiel über die Command Line bzw. das Portal des Cloud-Providers oder Werkzeuge wie zum Beispiel Rancher oder Terraform durchgeführt werden.

Bei der Installation wird die Anzahl der Nodes und die Kubernetes Version angegeben. Anhängigkeit vom Provider kann eine höhere Verfügbarkeit für die Control Plane angegeben werden, Nach 5 bis 15 Minuten steht dann der K8s zur Verfügung. Die Leistung des K8s kann durch Hinzufügen bzw. Wegnehmen von Nodes jederzeit verändert werden. Die im K8s konfigurierten Nodes werden wie VMs unabhängig von ihrer Auslastung vom Provider verrechnet. Autoskalierung ist eine Möglichkeit, um die Kosten zu optimieren.

Autoskalierung in der Cloud

Über die Autoskalierung können einer Applikation bei Bedarf automatisch zusätzliche Ressourcen (CPU und RAM) zur Verfügung gestellt werden. Die Regeln dazu können mit Parametern wie z.B Anzahl der Requests, CPU- bzw. RAM-Auslastung vom Administrator vorab konfiguriert werden. Damit entfallen manuelle Schritte in der Betriebsführung und es kann blitzschnell reagiert werden. Sowohl das Hochskalieren als auch das Reduzieren von Ressourcen können automatisch durchgeführt werden.

Dabei werden sowohl die Anzahl der Nodes  je nach Konfiguration automatisch angepasst, als auch die Applikationen/Services in zusätzlichen Instanzen gestartet bzw. gestoppt. Dies erfolgt über sogenannte Pods.

Ein Pod ist das einfachste ausführbare Objekt in einem Kubernetes Cluster. In einem Pod können ein oder mehrere Container ablaufen. Ein Pod stellt eine Instanz einer Applikation dar. Durch das Starten von zusätzlichen Pods wird die Applikation hochskaliert (= horizontale Skalierung).

Praktisches Beispiel für autoscaling in der Cloud

Am obigen Beispiel sieht man sehr schön, wie der Autoscaler bei Erreichen einer vom Administrator definierten kritischen Prozessorlast beginnt, zusätzliche Pods zu starten (rechte untere Grafik). Da die bestehenden Nodes jedoch über dem Lastlimit sind und keine zusätzlichen Pods starten können (ersichtlich an den kleinen roten Peaks in der rechten unteren Grafik), müssen zuerst zusätzliche Nodes hochgefahren werden. Mit Hilfe der zusätzlichen Nodes und Pods kann die Applikation das erhöhte Nutzungsvolumen bewältigen.

Das Ziel: Eine Cloud-Strategie für Ihr Unternehmen

Um eine vollständige Cloud-Strategie und eine sinnvolle Umsetzung für Ihr Business zu entwickeln ist es wichtig, sich mit Cloud-Native Methoden auseinanderzusetzen. Ein Grundverständnis für die Funktionsweise von Skalierung in der Cloud kann Ihnen helfen, Anwendungsfälle und Prozesse, die dadurch profitieren, besser zu identifizieren. Die einfache und umfassende Skalierbarkeit ist eine der vielen Möglichkeiten, die man dabei gewinnen kann. In unseren Kursen und bei unserer Beratung unterstützen wir Sie dabei, die Möglichkeiten von Cloud-Computing für Ihr Unternehmen zu nutzen.


UNSERE TRAININGSANGEBOTE INNOVATIONSTECHNOLOGIEN:

Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects

Cloud-Management – Chancen und Erfolgsfaktoren

Der Umzug von IT-Services in die Cloud ist für viele Unternehmen ein aktuelles Thema. Entscheidend dabei ist, nicht nur die jeweiligen Applikationen, Datenbanken und Netzwerkstrukturen fit für die Cloud zu machen. Man muss auch darüber nachdenken, wie die Cloud Services zukünftig administriert werden sollen! Wir berichten aus unserer praktischen Erfahrung über Chancen und Erfolgsfaktoren für gutes Cloud Management.

Die Nutzung von Cloud-Angeboten, wie sie z.B. die bekannten Public Clouds von AWS, Azure oder Google bereitstellen, hat für Unternehmen folgende Vorteile: 

  • Skalierbarkeit der benötigten Ressourcen 
  • Transparenz und Nachvollziehbarkeit bei Kosten und Administration 
  • Einfacher Zugriff und Nutzung von speziellen Services wie z. B. Angeboten zu AI, Blockchain oder spezialisierten Caches. 

Fallbeispiel: Umzug eines Unternehmens in die Cloud 

Greifen wir das Beispiel eines international agierenden, österreichischen Unternehmens heraus, das bisher seine Server im Rechenzentrum eines externen Providers stehen hat. Dieser nimmt gleichzeitig die Administration der Server und die Installation der dort genutzten Applikationen vor. Mit der monatlichen Bezahlung werden Service und IT-Leistungen abgerechnet. Vor der Umstellung auf Cloud-Services, stellt sich die Frage, wie dieses Verhältnis zukünftig geregelt werden soll. Für erfolgreiches Cloud-Management sind für den Anfang folgende drei Punkte wichtig: 

  • Die Rolle des Cloud-Administrators klar abgrenzen
  • Containertechnologien wie Docker nutzen 
  • Skalierbarkeit optimal nutzen 

Die Rolle des Cloud-Administrators klar abgrenzen 

Beim Umstieg auf die Cloud ist es sinnvoll, die Schnittstellen zwischen Applikationsentwicklern, Infrastrukturprovider (Cloudprovider) und dem zukünftigen Cloud-Administrator klar abzugrenzen und ggf. neu aufzustellen. 

Die Rolle des Cloud Administrators kann entweder intern oder durch einen externen Dienstleister erfüllt werden. Im Falle eines externen Dienstleisters sollte die Subscription nicht auf den Namen des Cloud Administrators laufen, sondern den Auftraggeber zugeordnet sein, womit auch klar der tatsächliche Nutzer der Ressourcen geregelt ist. Dadurch erhält der Auftraggeber direkt die Rechnung über die genutzten Ressourcen und damit über die detaillierte Aufstellung die volle Transparenz zur Struktur der tatsächlich angefallenen Kosten. 

Der Cloud Administrator erhält Zugang zu den Ressourcen in der Subscription des Auftraggebers, jedoch nicht das Recht die Subscription selbst zu ändern (z.B. Zahlungsmethoden). Wenn es notwendig ist, die Administration zu wechseln (z.B. aufgrund von Insolvenz des Dienstleisters oder mangelnder Leistung), kann dies einfach über die Autorisierung (Benutzer und Rechtevergabe) erfolgen. 

Containertechnologien wie Docker nutzen 

Die Schnittstelle zwischen Applikationsentwicklung und der Administration ist aufgrund der Schwierigkeiten bei der Installation von Softwareapplikationen oftmals komplex, . Gerade bei der Nutzung von Cloud Services bieten sich Containertechnologien wie Docker als Lösung an. 

Durch die Nutzung von Containertechnologien wie Docker kann sich die Cloud Administration auf die wesentlichen Aufgaben konzentrieren, nämlich auf die Schaffung einer sicheren, skalierbaren, performanten und kostengünstigen Systemumgebung mittels Cloud Ressourcen (Prozessor, Storage, Load Balancing, CDN, verwaltete Datenbanken etc.). 

Die Applikationsentwickler sind für die fertige Bereitstellung der Software auf Basis von Containern verantwortlich. Eine Anwendungsinstallation entfällt, da der Container die vollständig konfigurierte Laufzeitumgebung enthält. Dadurch werden auch Fehler bei der Installation ausgeschlossen. 

Skalierbarkeit optimal nutzen 

Derzeit können virtuelle Maschinen, die kontinuierlich und konstant ausgelastet werden, in einem klassischen Rechenzentrum noch kostengünstiger als über die Cloud bereitgestellt werden. Ein wesentlicher Charme von Cloud-Angeboten liegt jedoch in der einfachen und ggf. weltweiten Skalierbarkeit der genutzten Services, die in einer eigenen RZ-Infrastruktur nicht vergleichbar kostengünstig aufgebaut werden können. 

Durch den Einsatz skalierbarer Docker Container kann der Cloud Administrator rasch auf zusätzlichen Bedarf reagieren und die Anzahl der gleichzeitig gestarteten Containerinstanzen mit wenigen Kommandos hochfahren und auch wieder reduzieren. Mit dem Einsatz von Containermanagement wie Kubernetes kann dieser Vorgang sogar automatisiert werden. 

Um die Skalierung effizient zu nutzen, muss die Verantwortung dafür zwischen Applikationsentwicklung und Administration klar bestimmt sein, wobei die Nutzung von Containern eine Voraussetzung ist. Die Aufgabe der Entwicklung ist es skalierbare Applikationen bereitzustellen. 

Cloud-Potentiale Nutzen 

Mit Cloud Services stehen Unternehmen mächtige, skalierbare Infrastrukturwerkzeuge zur Verfügung. Durch den gezielten Einsatz und gutes Cloud Management ergeben sich jeden Menge Potentiale – und das nicht nur für Großunternehmen. 

Die Beschaffung von Cloud Ressourcen muss die geänderten technischen und organisatorischen Rahmenbedingungen im Vergleich zu klassischen IT-Beschaffungen berücksichtigen. Spirit in projects ist ein Spezialist für die Erstellung von Cloud Konzepten und technischen Unterlagen in Beschaffungsvorgängen bzw. bei Ausschreibungen. Wir erstellen mit unseren Kunden tragfähige und zukunftssichere Konzepte, erstellen die Unterlagen und unterstützen im Beschaffungsvorgang mit unserem technischen Hintergrundwissen. 


UNSERE TRAININGSANGEBOTE ZU INNOVATIONSTECHNOLOGIEN:

Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects

Agiles Requirements Engineering – Erfolgsfaktoren für agile Methoden

Lastenhefte und Pflichtenhefte sind Ihnen zu schwerfällig und langweilig? Agilität ist das Schlagwort der Stunde! Projekte sollen schnell umgesetzt werden. Von der Erhebung der Anforderungen bis zur Umsetzung sind agile Methoden daher in aller Munde. Wir haben 6 Erfolgsfaktoren für agile Methoden im Requirements Engineering und der Implementierung von Projekten identifiziert.

Agile Methoden erfreuen sich immer größerer Beliebtheit. Innovative Projekte zur Digitalisierung benötigen Flexibilität in der Umsetzung aber auch in den Anforderungen. Um die Herausforderung der Agilität bei der Erhebung und Klärung von Anforderungen zu stemmen, stützen sich Projekte gerne auf die Techniken des agilen Requirements Engineering.

Was ist agiles Requirements Engineering?

Die bevorzugten agilen Methoden zum Erfassen und Verwalten der Anforderungen im Zuge eines agilen Requirements Engineering Prozesses sind:

  • Workshops
  • Die Spezifikation der Ergebnisse mittels User Stories bzw. Epics, Technical Stories etc.
  • Backlogs und Kanban-Boards zum Verwalten der Anforderungen im Zuge der Implementierung. Diese werden entweder physisch (zentrale Tafeln) oder elektronisch (in Tools wie Jira etc.) realisiert.

Die Erfolgsfaktoren für agiles Requirements Engineering

Diese Methoden sind richtig und wichtig. Ihr Einsatz führt bei vielen Projekten zu hervorragenden Ergebnissen – bei vielen anderen Projekten aber auch zu großen Problemen. Dabei sind die Standpunkte teils sehr extrem: In manchen Organisationen ist Agilität das Zauberwort schlechthin. Andere haben nach schlechten Erfahrungen die Benutzung des Wortes im Zusammenhang mit Projekten geradezu verboten.

Agilität ist nicht nur eine Technik, sondern im Zusammenhang mit Projekten und Unternehmen auch eine Managementphilosophie. Die reine Nutzung der Prozesse und Techniken ist nicht ausreichend, um erfolgreich zu sein. Nach unserer Beobachtung gibt es grundlegendere Erfolgsfaktoren.

Wolfgang Hiermann, CEO und agile Coach

Als Erfolgsfaktoren haben sich aus unserer Erfahrung in Projekten und der Beratung folgende 6 Punkte herauskristallisiert:

  • Product Leader statt Product Owner
  • Kurze Feedbackzyklen tatsächlich durchführen
  • Produktaffine Entwickler
  • Expeditionsfreudige Organisation
  • Offenheit und Transparenz
  • Entwicklung an die Brust holen

Diese Faktoren sind Puzzlesteine für den Erfolg von agilem Requirements Engineering und agilen Projekten. Im Zusammenspiel ergeben sie ein funktionierendes Ganzes, in dem agile Methoden und Techniken sinnvoll eingesetzt werden können.

Erfolgsfaktor 1: Product Leader statt Product Owner

Agilität bedeutet Flexibilität. Flexibilität wird unterstützt durch den Willen und die Möglichkeit der Stakeholder, Ziele (und hier vor allem die Nutzungsziele) zu hinterfragen, Entscheidungen anzupassen und Prioritäten zu verändern. Am allerwichtigsten ist allerdings die Begeisterung und der aktive Gestaltungswille der Stakeholder für das Produkt.

Erfolgreiche agile Projekte benötigen daher weniger einen (oftmals leider) rein administrativen Product Owner, sondern eine Gruppe an eng zusammenarbeitenden Product Leaders, die mit Weitsicht und Energie das Projekt als Stakeholder vorantreiben.

Erfolgsfaktor 2: Kurze Feedbackzyklen tatsächlich durchführen

Leider scheitern manche agile Projekte genau daran, dass die Interaktion zwischen Stakeholdern und agilem Team nach dem initialen Workshop auf ein Minimum reduziert wird. Um agile Projekte erfolgreich umzusetzen, ist es nicht genug, die Anforderungen über User Stories zu beschreiben und in Backlogs zu verwalten.

Kurze Sprints müssen tatsächlich durchgeführt werden. Am Ende eines Sprints muss ein herzeigbares Ergebnis stehen und am allerwichtigsten, die relevantesten Stakeholder der Anforderungen müssen dieses Ergebnis tatsächlich zu Gesicht bekommen, sich damit beschäftigen und gegebenenfalls Anforderungen und Ziele anpassen können.

Erfolgsfaktor 3: Produktaffine Entwickler

Die Mitarbeit der Entwickler wird leider oft aus Angst vor Goldplating vernachlässigt. Doch das Gegenteil ist der Fall: Begeisterte Entwickler wollen nichts programmieren, was niemand benutzen wird – sie wollen Benutzer erleben, die das Produkt mit Freude einsetzen und hin- und wieder mal ein ehrlich gemeintes „Danke“ für ihren Einsatz hören.

Denn agile Flexibilität in der Entwicklung ist schwierig, wenn die Entwickler keinen echten Bezug zum Ergebnis herstellen können. Eine besonders gelungene Umsetzung von Anforderungen und Technologie wird nur erreicht, wenn Entwickler vom Nutzen des Produktes überzeugt sind und die Gelegenheit haben, die Anforderungen aktiv mitzugestalten.

Erfolgsfaktor 4: Expeditionsfreudige Organisation

“Veränderungen strengen an. Durch Veränderungen ist noch nie etwas besser geworden. Wir warten einmal ab, was da auf uns zukommt, dann werden wir uns das ansehen.” – Wenn das die Lebensphilosophie der Organisation des Auftraggebers ist, dann fühlen sich die Teammitglieder eines agilen Projekts wie Außerirdische kurz nach der Landung. Das Frustpotential im Projekt ist groß.

Denn hier gilt das Prinzip: “Wer A sagt, muss auch B sagen.” Stakeholder und Organisationen, die sich für agile Vorgangsweisen nicht im vollen Umfang begeistern und einsetzen können, sollten lieber die Finger davon lassen und konservative Methoden einsetzen – damit aber auch auf die Vorteile der flexiblen Entwicklung verzichten.

Erfolgsfaktor 5: Offenheit und Transparenz

„Es ist nicht klar, warum wir diese Aufgabe so durchführen. Es wurde aber schon immer so gemacht, also muss das auch in Zukunft so sein“ – solche Aussagen haben Sie sicher schon gehört. Manchmal wird das Hinterfragen eines Vorgangs als Anmaßung oder sogar als Beleidigung empfunden. Manche Fragen dürfen nicht überall bzw. nur im richtigen Kontext gestellt werden. Und viel zu oft müssen Vorschläge abgestimmt und Entscheidungen im kleinen Kreis vorbereitet werden, bevor sie „offen“ mit allen Stakeholdern diskutiert werden können.

Hier gilt der berühmte Satz Peter Druckers: “Culture eats strategy for breakfast.” An dieser Stelle stirbt die Agilität (und die Projektdemokratie gleich mit). Effiziente Agilität benötigt offene Zusammenarbeit und gegenseitige Wertschätzung.

Erfolgsfaktor 6: Entwicklung an die Brust holen

Ja – man kann agile Entwicklung auch outsourcen. Je größer die Distanz, desto höher wird der Aufwand für die Steuerung und die Kommunikation in agilen Projekten. Die immer besser werdenden Mittel für Videokonferenzen bzw. die Livebearbeitung von Dokumenten erleichtern die Arbeit zwar enorm, sind aber kein Ersatz für echte kurze Wege.

Bei agilen Projekten wird daher Nearshoring gerne vor Offshoring eingesetzt. Die höchste Effizienz und Effektivität für agile Projekte wird allerdings dadurch erreicht, dass die Distanzen zwischen Stakeholdern und der Entwicklung so klein wie möglich gehalten werden. Onshoring agiler Projekte oder manchmal noch besser Onboarding des agilen Teams für die Projektlaufzeit sind erfolgreiche Methoden.

Fazit: Kultur und Know-how

Betrachtet man die 6 Erfolgsfaktoren, haben sie viel mit der Unternehmenskultur und dem Aufbau internen Know-hows zu tun. Um Agilität im Requirements Engineering und in Projekten anzuwenden, benötigt es Zeit sowie Wissen über agile Methoden. Die Projektbeteiligten benötigen profundes Produktwissen und ein gutes technisches Grundverständnis.

Dies in einem Team aufzubauen ist also ein wesentlicher Schritt in Richtung einer agilen Organisation. Wir von Spirit in Projects unterstützen Sie mit unserem Kursprogramm und mittels Beratungen dabei, Agilität auch in Ihrer Organisation zu verankern!


UNSERE TRAININGSANGEBOTE ZU INNOVATION & AGILITÄT:

Trainings für Agile Methoden und Kanban bei Spirit in Projects
Trainings für Agile Methoden und Kanban bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings für Agile Methoden und Kanban bei Spirit in Projects
Trainings für Agile Methoden und Kanban bei Spirit in Projects
Trainings für Agile Methoden und Kanban bei Spirit in Projects

Trends im Requirements Engineering – Digitale Transformation mit Methode

„Wozu brauchen wir noch Anforderungen? Wir sind doch agil!“ – Haben sie diesen Satz schon einmal gehört? In Zeiten rasanter Innovation klingt allein der Begriff Anforderungsmanagement schon schwerfällig. Doch gerade angesichts des radikalen Wandels von Unternehmen und Business-Modellen kommt dem Requirements Engineering eine zentrale Rolle bei der Steuerung der digitalen Transformation zu. Um dies zu leisten, müssen sich aber auch die angewandten Methoden ändern. Wir bringen Ihnen die aktuellen Requirements Engineering Trends näher!

Aus dem realen oder gedachten Innovationsdruck („Wir brauchen Innovation!“) heraus entstehen viel zu oft Projekte, die auf halbem Weg versanden und horrende Kosten verursachen. Warum? Weil die Anforderungen nicht konkret und genau genug erhoben wurden. Denn Requirements Engineering ist einer der wichtigsten Faktoren für das Gelingen eines Projektes. Das ist in der IT schon lange akzeptiert. Viele Organisationen haben deshalb große Anstrengungen unternommen, um die richtigen Anforderungen, gut abgestimmt und zur richtigen Zeit in Ihre Projekte einfließen zu lassen. Neben klassischen Methoden wird dabei immer stärker auf agile Vorgehensweisen gesetzt.

Herausforderung digitale Transformation

Wo liegt dann die Herausforderung? Trotz guter methodischer Grundlagen empfinden Projekte, die stark auf die digitale Transformation großer Unternehmen oder Organisationen ausgerichtet sind, die klassischen Methoden des Requirements Engineering oft als unzureichend. Sie werden mitunter als nicht zielführend und oftmals auch als zu langsam und überbordend wahrgenommen. Dabei ist offenbar auch Agilität nicht immer eine ausreichende Antwort: Denn agile Methoden des Requirements Engineering werden mitunter nur in der Entwicklung als relevant wahrgenommen. Oder sie werden als zu oberflächlich und nicht für komplexe Aufgabenstellungen geeignet empfunden. Fazit: Die etablierten Werkzeuge des Requirements Engineering greifen für die Steuerung des digitalen Wandels zu kurz.

„Der Requirements Engineer steht aktuell großen Änderungen gegenüber. Die Vorgehensweisen in diesem Bereich werden grundlegend geändert und teilweise auf den Kopf gestellt werden.“

Karl Schott, CEO Spirit in Projects

Trend: Das bewegliche Ziel

Niemand, der im Bereich des Anforderungsmanagements tätig ist und dessen Unternehmen sich den digitalen Wandel verschrieben hat, wird Projekte so wie bisher durchführen können und trotzdem erfolgreich sein. Der Grund dafür ist, dass sich die Rolle des Requirements Engineers fundamental verändert:

„Requirements Engineers finden sich immer mehr in Projekten zur digitalen Transformation wieder. Diese werden zwar von einer Vision und strategischen Zielen getragen – der einzuschlagende Weg, der tatsächliche Nutzen oder die strategische Technologie zur Umsetzung liegen jedoch nicht konkret vor und müssen erst im Projekt erarbeitet werden.“

Karl Schott, CEO Spirit in Projects

Die Probleme der Branche und die aktuelle Diskussion der Froschung zum Thema ubiquitous requirements engineering spiegelt das wider. Das Thema Anforderungsanalyse bildet in Innovationsprozessen eine Klammer über das gesamte Projekt

Aspekte des ubiquitous requirements engineering

So schwer uns im deutschen die Aussprache von „ubiquitous“ auch fällt (die Lösung: yoo-bi-kwuh-tuhs), meint der Begriff die Allgegenwärtigkeit vom Requirements Engineering in Innovationsprojekten. Dabei ergibt sich eine Reihe von Problemstellungen und Veränderungen, die aus unserer Sicht die aktuellen Requirements Engineering Trends ausmachen:

  • offener Abschluss: Analyseprojekte zum Aufbau von technischen Ökosystemen müssen ohne klarem Endekriterium durchgeführt werden.
  • Ganzheitlichkeit: Ganzheitlichkeit rückt in den Fokus, wenn die Lösung ihr Umfeld technisch und organisatorisch so stark beeinflusst, dass für die Analyse keine klaren Grenzen gezogen werden können.
  • grenzenlose Systeme: Systeme überschreiten Grenzen, wenn die Lösung überregional oder global entwickelt und eingesetzt wird und die Beteiligten orts- und zeitbezogen schwer zu greifen sind.
  • Jedermann: Viele Stimmen sprechen mit, wenn durch die digitale Transformation immer stärker auch Stakeholder einbezogen werden, die keine Expertise bei der Entwicklung von Lösungsideen einbringen können.
  • Crowd: Wenn die Benutzer als wichtige Stakeholder nicht mehr erfassbar sind oder nicht einmal mehr klar ist, ob diese reale Personen sind, muss die Erhebung der Anforderungen automatisiert erfolgen.
  • außerhalb der Komfortzone: Wenn die zu lösende Problemstellung nicht nur durch eigenes Wissen und Fähigkeiten analysiert werden kann, sondern Zusammenarbeit über Domain-, Organisations- und Unternehmensgrenzen zur Problemlösung erforderlich ist – dann heißt es „raus aus der Komfortzone“.

Ein wichtiger Trend ist auch der Wandel in der Rolle von Requirements Engineering für das Unternehmen selbst: Es geht nicht mehr „nur“ darum Anforderungen zu erheben. Sondern darum, bereits frühzeitig mögliche Technologien und Lösungsansätze einzubringen. Der Trend geht dahin, dass der Requirements Engineering auch noch zusätzliches leistet:

  • Strategieberatung: Da die Unternehmensstrategien immer stärker von der Nutzung von Technologien zur Lösungsfindung und -umsetzung abhängen.
  • Business Enabler: Wenn die Möglichkeit zur Nutzung von Technologien den Erfolg am Markt bestimmt.
  • Orientierung zu disruptiven Technologien: Wenn neue Technologie eingebracht werden, um neue Anforderungen für das Unternehmen überhaupt erst entstehen zu lassen.

Diese Trends zeichnen eine Entwicklung, die wir als „neues Requirements Engineering“ bezeichnen. Unsere praktischen Erfahrungen aus Projekten können Sie in Detailartikeln lesen. Hier können Sie übrigens mehr zu unserem Beratungsansatz zum Thema Requirements Management lesen.


Unsere Trainingsangebote zu Innovation & Digitaler Transformation:

Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects
Trainings zu Digitalisierung und Innovation bei Spirit in Projects

Agilität

Ausschreibungen

Digitalisierung

Spirit in Projects - Wir ermöglichen digitale Innovation

Innovation